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Course topics

Static games

Zero-sum games

Potential games

Extensive form games

Dynamic games, dynamic programming principle

@A Dynamic games, dynamic programming for games
Dynamic games, linear quadratic games, Markov games
B Convex games, Nash equilibria characterization

B Convex games, Nash equilibria computation

Auctions

=

Bayesian games

=

Learning in games
Final project presentations

=

=
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Example: Tic-tac-toe

= Player 1 draws x on the board. x

= Player 2 draws o on the board.
= The game ends when either Player 1 or X 0
Player 2 has put three signs in a row, or

when the board is full. x o

- What are the differences between this game and the games we have seen
previously?

3/34



“Advanced” games

Features:

different order of play

multiple stages

variable number of stages

partial information (dependent on actions)

memory-constrained players

The matrix form is not the most effective representation.
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Extensive form

A finite tree structure where
= the game evolves from the root to the leaves
> Let us consider two-player games
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Extensive form

A finite tree structure where
= each level of the tree corresponds to a player’s turn
> A stage is made of two turns, i.e. two levels of the tree
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Extensive form

A finite tree structure where

= links correspond to actions
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Extensive form

A finite tree structure where
m each leaf is associated to an outcome

(1,0) (—=1,0) (2,1) (2,—1) (1,3) (0,0) (—3,0) (1,3)
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Extensive form

A finite tree structure where
= nodes of each player are divided into information sets
» each node in the same information set has the same branches

(1,0) (—=1,0) (2,1) (2,—1) (1,3) (0,0) (—3,0) (1,3)
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Some exotic information sets...
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Actions and strategies

Action # Strategy!
Let 74, ...,Z; be the information sets of Player 1.
Let U be the set of actions available to player 1 in the information set Z;.

A pure strategy v = (11, ..., ) for player 1 is a map that assigns an action to
each information set.

YL — U

Similarly, for player 2

Let J1,...,Js be the information sets of player 2. Let V; be the set of actions
available to Player 2 in the information set 7.

What is a pure strategy for player 2?

= (O, . 0C)

>
o, = 8“ - Vr' . §—.(,2,..,g
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Actions and strategies - example (zero-sum game)

Example of a single-stage game.
= Player 1 plays “first”
m Player 2 plays “second”

m Player 2 does not know the action of
Player 1
IS {Zy} IS: {7}
Uy = {N, S} vV ={E,W}
Example pure strategy
Y(Zi) =N
o(J1)=E

Simultaneous play
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Actions and strategies

Example of a single-stage game.
= Player 1 plays first
= Player 2 plays second
= Player 2 knows the action of Player 1
= ), and V% (i.e., possible actions in

IS : {7y} IS : {J1, T2} Ji1 and in 7,) could be different!
Uy = {N, S} Vi =V ={E,W}
Example pure strategy Sequential play
v(Zy) =N

o) =E. o) =W

S rO‘.,ﬁ})
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From extensive form to matrix form

P1

{7} P2 {7}

Uy = {N,S} Vi ={E,W}

(simultaneous play)

Remember: each row/column corresponds to a strategy

o(Jy) =E o(Jy) =W
v(Zy) =N +1 —1
+(Zy) =8 @ 1
/Nmsk

ELJ‘ v \‘\ bd’( —
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From extensive form to matrix form

P1 Z{I1}

Uy ={N,S}
(sequential play)

P2 {\71»\72}
Vi =V ={E,W}

q(Jy) = E q(T1) =E a(Ty) =W o(Ty) =W
o(T) = E a(Tp) = W o(Tp) = E o(Tp) = W
1 1 2 2
Y(Zy) =N +1 +1 -1 -1
¥(Zy) =8 0 -1 0 -1
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Game play: Card playing
Consider the following card game with a deck of 4 cards.
= Players take turn. At each time a player can take 1 or 2 cards.
m The player who takes the last card will win

Activity - get in groups of two and do the following:
- Play the game
- Draw the game tree

- How would you play the game for deck of 5 cards? t \'9_
- How would you play the game for deck of 6 cards? o 2

\ (PR
/ | ‘r’” (\(’\)
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From extensive form to matrix form

Games in extensive form can be reformulated in matrix form!

Definitions/results extend to this larger class of games, as long as we use the new
definition of strategy.

Example: Saddle point equilibria (pure equilibrium strategy)

Definition: A pair of strategies v* and ¢ is a saddle point equilibrium if for any
other policies v and o, the outcome J (v, o) of the game satisfies

J(v" o) < J(v",0") < J(v07).
N——
saddle-point value of the game

Let us check the previous examples.
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From extensive form to matrix form 0.sum |
P s Mminrmizesr”

m The strategy o(J1) = W is strictly
dominated by o(J;) = E

m The strategy v(Z1) = N is strictly
dominated by y(Z;) = S

= One pure NE

o(J1) =E o(J1) =W

v(Zy) =N +1 —1
JECREE

Nash

v(Zy)
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From extensive form to matrix form

What are the Nash equilibrium strategies?

ef‘ﬁw,als’ —

o(Jq) =E o(Jq) =E o(Jq) =W o(Jq) =W

o(Jp) = E o(Jp) =W o(Jp) =E a(Tp) =W
2(Z) =N +1 +1 —1 1
@) = @ 1 0 -1
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From extensive form to matrix form

Computing Nash equilibria
Idea: Find equilibrium strategies in the matrix form of the extensive game.

Problem 1: Scalability: the size of the matrix is exponential in number of
information sets
Problem 2: Some equilibria do not capture the timing of the game play.
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An ultimatum game
Player 1 makes a fair or unfair offer, player 2 accepts or rejects
A: accept, R: reject, F: fair, U: unfair

= What are the pure Nash equilibria?
= How would you play this game?

(5,5) (0,0) (8,2) (0,0) L\

players are maximizers here / ] exw \\ \orn 8

a(Jq) =A o 1)‘/?‘/ 6(‘71)1’? o(Jq) =R

a(Jp) =A J2) = a(Tp) + A o(Jp) =R
e

~Ey) = F (5,5) / (5,5) (0,0) (0,0)

2(Z) = U (8,2) (0,0) (B,ZD (0,0)

Ultimatum game was introduced by Nobel laureate John Harsanyi
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An ultimatum game P
Player 1 makes a fair or unfair offer, player 2 accepts or rejects
A: accept, R: reject, F: fair, U: unfair F L

@/ Q)*° @/ 2)

Subgame perfect NE

A strategy is a subgame perfect equilibrium if it
represents a NE of every subgame of the original
game.

(5, 5) (0,0) (8,2) (0,0)

players are maximizers here
Which one is a subgame perfect equilibrium?

a(Jq)=A a(Jq)=A a(Jq) =R a(Jy) =R
a(Jp) =A a(Jp) =R a(Jp) =A a(J3) =R
V() =F (57 5) (55 5) (07 O) (07 O)

Ty = U @ (0,0) (8,2) (0,0)
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Notion of subgame

Subgame is a part of the game that is itself a well-defined game
= the initial node is in a singleton information set
m if a node is contained in the subgame then so are all of its successors

= if a node in an information set is in the subgame then all nodes in that
information set are also in the subgame
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Subgame perfect equilibria

® The notion of subgame is not always well defined.
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Chess - a game with perfect information

In case of games with perfect information, we can search for a pure NE more
efficiently.

Player 2 (Black)
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Chess

Player 1 ( Whlte/N

Le7 His  Af5

N N 1 - -~ -
Player 2 (Black) dotg doqs  s2g7

o d o D

—1 —1 i —1 —1
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Chess

Player 1 (White) !

%e7 g5 Af5

Player 2 Black dofg d248 @d?

1 /&\ 1

&das  His  Hd7

(o)/(o) (l) ’o)\a

<~ - - - +1
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Chess
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Backward induction

Player 1 (White) ‘o
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Backward induction

-~

Player 1 (White) !

@e7 His  Af5

<: \j /)\\&.

Player 2 BIack dotg doqs  s2g7

/oéo\

—1 -1 -1 -1 -1
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Backward induction

Player 1 (White) !

@e7 His

(o) o) N k»
’ LA .

-~

Player 2 (Black)

Af5
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Backward induction

Player 1 (White) O

The game was decided since the beginning!
“White checkmate in two”
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Zermelo’s theorem (1913)

Different versions of the statement - see here. Chess is a two-person game
without chance, where players have strictly opposing interests and where only a
finite number of positions are possible.

Therefore one of the following must be true:
m the first-player can force a win
= the second-player can force a win
m both players can at least force a draw
“Should it be answered exactly, Chess would of course lose the character
of agame at all. 7

It is thus the sheer complexity of the game of Chess alone that allows it to
retain its mystery.
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Backward induction

In games with perfect information, we can solve for subgame perfect Nash
equilibrium using backward induction.

MAP FoR X

XOTT

X

O
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o

o

COMPLETE MAP OF OPTIMAL TIC-TAC-TOE MOVES

YOUR MOVE 15 GIVEN BY THE FOSITION OF THE LARGEST RED SYMBoL
ON THE GRID. WHEN YOUR OPPONENT PCKS A MOVE, ZCOM IN ON
THE REGION OF THE GRID WHERE. THEY WENT. REPEAT.
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Backward induction

Features
= More efficient than exploring the matrix form
m Returns a strategy that is a subgame perfect equilibrium

Can we always apply backward
induction?

We can for games with perfect
information.

What other games allow the use of backward induction?
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Feedback games

A multi-stage game in extensive form is a feedback game if
no information set spans over multiple stages
each “Player 1” node is the root of a separated sub-game.
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Feedback games

A multi-stage game in extensive form is a feedback game if
no information set spans over multiple stages
each “Player 1” node is the root of a separated sub-game.
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Backward induction in feedback games

+1 42 1 0 0o -2 -1 =2

Starting from the leaves, identify subgames for which we can determine the pure
NE strategy...

... either because players have full information...
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Backward induction

Starting from the leaves, identify subgames for which we can determine the pure
NE strategy...

... either because players have full information...
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Backward induction

Starting from the leaves, identify subgames for which we can determine the pure
NE strategy...

... either because players have full information...

... or because they play a simultaneous game with pure NE.
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Backward induction
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Backward induction

Solve the game from the leaves towards the root
Move up stage-by-stage (not level-by-level)
Record the pure equilibrium strategy for each information set

|
= |f the algorithm converges to the root, then we have a pure NE.
= No guarantees of convergence, even when a pure NE exists.
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Formalizing backward induction for feedback games

We can use backward induction to compute subgame perfect equilibria, if they
exist. How? And Why?

Read: Sections 7.7-7.9 of Hespanha book.

Based on the reading, complete the following tasks for zero-sum feedback games.

Definition: pure strategy subgame perfect equilibria for feedback games.
These are known also as pure feedback saddle-point equilibria.

Backward induction: define the approach to compute a pure strategy
subgame perfect equilibria for feedback games

Why the strategy found from backward induction above is a Nash equilibrium
of the multi-stage feedback game?

How can this approach be generalized to non zero-sum feedback games?
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Backward induction may not find all pure NE

Read: Example from Figure 7.4 of Hespanha book.
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Summary

m Extensive form games and game tree
m Information sets, strategies
m Pure strategy equilibria for extensive form games

Converting extensive form games to matrix games +h

Pure strategy subgame perfect equilibria ameS wl\—! ?O'VW\D—L
® Examples: tic-tac-toe, chess, card playing °

Backward induction Ches, .
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